Characterization of the interaction between the Saccharomyces cerevisiae Rad51 recombinase and the DNA translocase Rdh54.
نویسندگان
چکیده
The Saccharomyces cerevisiae Rdh54 protein is a member of the Swi2/Snf2 family of DNA translocases required for meiotic and mitotic recombination and DNA repair. Rdh54 interacts with the general recombinases Rad51 and Dmc1 and promotes D-loop formation with either recombinase. Rdh54 also mediates the removal of Rad51 from undamaged chromatin in mitotic cells, which prevents formation of nonrecombinogenic complexes that can otherwise become toxic for cell growth. To determine which of the mitotic roles of Rdh54 are dependent on Rad51 complex formation, we finely mapped the Rad51 interaction domain in Rdh54, generated N-terminal truncation variants, and characterized their attributes biochemically and in cells. Here, we provide evidence suggesting that the N-terminal region of Rdh54 is not necessary for the response to the DNA-damaging agent methyl methanesulfonate. However, truncation variants missing 75-200 residues at the N terminus are sensitive to Rad51 overexpression. Interestingly, a hybrid protein containing the N-terminal region of Rad54, responsible for Rad51 interaction, fused to the Swi2/Snf2 core of Rdh54 is able to effectively complement the sensitivity to both methyl methanesulfonate and excess Rad51 in rdh54 null cells. Altogether, these results reveal a distinction between damage sensitivity and Rad51 removal with regard to Rdh54 interaction with Rad51.
منابع مشابه
ATP-dependent chromatin remodeling by the Saccharomyces cerevisiae homologous recombination factor Rdh54.
Saccharomyces cerevisiae RDH54 is a key member of the evolutionarily conserved RAD52 epistasis group of genes needed for homologous recombination and DNA double strand break repair. The RDH54-encoded protein possesses a DNA translocase activity and functions together with the Rad51 recombinase in the D-loop reaction. By chromatin immunoprecipitation (ChIP), we show that Rdh54 is recruited, in a...
متن کاملYeast recombination factor Rdh54 functionally interacts with the Rad51 recombinase and catalyzes Rad51 removal from DNA.
The Saccharomyces cerevisiae RDH54-encoded product, a member of the Swi2/Snf2 protein family, is needed for mitotic and meiotic interhomologue recombination and DNA repair. Previous biochemical studies employing Rdh54 purified from yeast cells have shown DNA-dependent ATP hydrolysis and DNA supercoiling by this protein, indicative of a DNA translocase function. Importantly, Rdh54 physically int...
متن کاملAnalyses of the yeast Rad51 recombinase A265V mutant reveal different in vivo roles of Swi2-like factors
The Saccharomyces cerevisiae Swi2-like factors Rad54 and Rdh54 play multifaceted roles in homologous recombination via their DNA translocase activity. Aside from promoting Rad51-mediated DNA strand invasion of a partner chromatid, Rad54 and Rdh54 can remove Rad51 from duplex DNA for intracellular recycling. Although the in vitro properties of the two proteins are similar, differences between th...
متن کاملCrossover interference in Saccharomyces cerevisiae requires a TID1/RDH54- and DMC1-dependent pathway.
Two RecA-like recombinases, Rad51 and Dmc1, function together during double-strand break (DSB)-mediated meiotic recombination to promote homologous strand invasion in the budding yeast Saccharomyces cerevisiae. Two partially redundant proteins, Rad54 and Tid1/Rdh54, act as recombinase accessory factors. Here, tetrad analysis shows that mutants lacking Tid1 form four-viable-spore tetrads with le...
متن کاملSynergistic action of the Saccharomyces cerevisiae homologous recombination factors Rad54 and Rad51 in chromatin remodeling.
Rad54, a member of the Swi2/Snf2 protein family, works in concert with the RecA-like recombinase Rad51 during the early and late stages of homologous recombination. Rad51 markedly enhances the activities of Rad54, including the induction of topological changes in DNA and the remodeling of chromatin structure. Reciprocally, Rad54 promotes Rad51-mediated DNA strand invasion with either naked or c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 288 30 شماره
صفحات -
تاریخ انتشار 2013